HIGHLGHT THERAPEUTICS

Unlocking the potential of IO

Overcoming anti-PD1 resistance to create best-inclass intra-tumoral immunotherapy

- BO-112 differentiated from other intratumoral innate immune activating agents
 - Unique single agent activity demonstrated in preclinical studies
 - Addresses two main mechanisms mediating resistance to anti-PD1 therapies
 - 50% of anti-PD1 resistant melanoma patients had clinical benefit after a few BO-112 injections - similar trends in other solid tumors
 - Compares favorably with lack of clinical efficacy for STING/RIG agonists, potentially superior to TLR9 agonists
- Three opportunities of success in the Phase 2 trials to prove BO-112's superior efficacy in reversing anti-PD1 resistance
- Strong and growing IP through 2036 and beyond in US and EU
- Raising €22M to help deliver results from three Phase 2 / POC studies by 2022 (latest trial)
- Multiple potential strategic exits and options guided by Internationally-experienced management team and advisers

BO-112 offers potential solution to anti-PD1 resistance to transform cancer immunotherapy

Highlight Therapeutics
 Unlocking the potential of immuno-oncology

The Company

Management, Boards and who we are

Highlight Therapeutics Unlocking the potential of immuno-oncolog

Executive Team and Board

Marisol Quintero, PhD, MBA CEO/Board Member

- Head Biotech and Medicinal Chemistry at Spanish National Cancer Research Centre
- BD and Tech Transfer at Spanish Cancer Research Centre, Fundación Botín, Life Length
- Pharmacy degree (University of Valencia), PhD in Pharmacology (UCL), Executive MBA (Instituto de Empresa)

Carlos Paya MD PhD Executive Chairman of the Board

- Leading physician-scientist at the Mayo Clinic
- Leadership track record in pharma, biotech, and start-ups
- Strategy, pipelines development, global launches and product life cycle
- Executed Company growth plans, successful fundraising in private/ public markets, and via BD and M&A

Mark Branum, PhD CMC & Manufacture

- Executive Director of CMC at Immune Design, until acquisition by Merck
- Senior CMC roles at OncoResponse and Theraclone Sciences
- Led academic R&D collaborations
- Ph.D. in biological chemistry (University of Minnesota), postdoctoral studies in biochemistry with Nobel Laureate Aziz Sancar (University of North Carolina)

Michael Doherty Regulatory Strategy

- Led Global Regulatory Affairs at Roche
- Launch No.1 oncology portfolio with a franchise of monoclonal antibodies and targeted medicines
- Member of the Roche portfolio committee from 2002 to 2016
- Prior positions: Global Head, Pharma Regulatory Affairs, Hoffmann La-Roche and Genentech

Non-Executive Members:

Janwillem Naesens (DROIA), Damia Tormo (COLUMBUS), Shahzad Malik (ADVENT), Matthias Van Woensel (DROIA)

Scientific Advisory Board

Ralph R. Weichselbaum; MD

- Professor of Radiation and Cellular Oncology Chair, Department of Radiation and Cellular Oncology, University of Chicago
- Made discoveries in basic signal transduction after ionizing radiation exposure and, in separate studies, discovered mechanisms of radiation resistance/sensitivity are mediated by cytokine activation in tumors
- Currently investigating the relationship between radiotherapy and immunotherapy

-	-	
tore	-	
12	m?	
L	12	

UCLA

UCLA

Antoni Ribas, MD, PhD

Professor of Medicine, professor of

and Medical Pharmacology at

Director of Tumor Immunology

Comprehensive Cancer Center:

Cancer Immunotherapy Center,

Committee; member of American

Society of Clinical Investigation

Recipient of AACR Richard and

Hinda Rosenthal Award and NCI

Outstanding Investigator Award

Director of Parker Institute for

Program at Jonsson

Chair of SWOG Melanoma

Surgery and professor of Molecular

Ignacio Melero, MD, PhD

- Professor of Immunology of the University of Navarra
- Leads a group working in translational tumor immunotherapy with emphasis on cell therapy, cytokine gene therapy, and immunestimulatory monoclonal antibodies
- Earlier in his career, contributed to seminal discoveries in the function Natural Killer cells, and T-cell costimulation via CD137 (4-1BB)

Michael Doherty

- Led the Global Regulatory Affairs function at Roche through the important growth years where Roche launched the number one oncology portfolio with a franchise of monoclonal antibodies and targeted medicines. Member of the Roche portfolio committee from 2002 to 2016
- Prior positions: Global Head, Pharma Regulatory Affairs,
- Hoffmann La-Roche Ltd., Basel/Genentech, San Francisco

Highlight Therapeutics Unlocking the potential of immuno-oncology

Clinical-stage oncology company maximizing potential of checkpoint therapy

Targeting anti-PD1 resistance to transform cancer immunotherapy

Clinical-stage oncology company maximizing potential of checkpoint therapy

Targeting anti-PD1 resistance to transform cancer immunotherapy Phase 2 asset BO-112 offers a unique and superior solution to anti PD1 resistance

- Unique multi-target approach to turn cold tumors hot and visible to immune system
- BO-112 activates selected signaling pathways in tumor microenvironment and specifically and uniquely in tumor cells
- Pre-clinically & clinically superior to other innate immune activators in clinical development (TLRs, RIGI, and STING agonists)
- Backed by robust and growing IP to 2036 and beyond in US and EU

Primary and acquired resistance a major barrier to successful cancer immunotherapy

- Most tumor types don't respond to checkpoint therapy with only 20-40% response rate for single agent in the best cases
- Primary resistance mainly due to lack of T-cells trafficking to tumor ("cold" tumor)
- Acquired resistance due to reduced MHC1 in tumor cell

Development program designed to maximize chances of success

Three clinical programs underway with Merck

- Three separate Phase 2/POC trials being initiated in collaboration with Merck
 & Co. in patients with anti-PD1 resistance using ORR as primary endpoint
- Additional independent Investigator-led studies including UCLA Phase 1 at the UCLA Jonsson Comprehensive Cancer Center, US
- Proven safety and activity in Phase 1 as monotherapy and in combination with anti-PD1's
- Focus on indications with unmet medical need and where intra-tumoral therapy has advantages over systemic therapies

Series B with potential for three significant, parallel inflection points

- Three opportunities of success in the Phase 2 trials to prove BO-112's superior efficacy in reversing anti-PD1 resistance
- Multiple potential strategic exits
- Highly experienced international management, Board and SAB to drive success

Clinical Development strategy

Maximizing chances of success of BO-112 to unlock the full potential of anti-PD1 therapies

 Highlight Therapeutics Unlocking the potential of immuno-oncology

Unlocking the full potential of checkpoint inhibitors

 \bigcirc

NSCLC

Turning cold tumors hot

BO-112 in combination with anti-PD1antibodies shows potent & durable clinical responses in patients not responding to anti-PD1 antibodies

immune cells

Optimised immune response

BO-112 multi-pathway approach has a duel positive effect

BO-112

Unlocking a large potential oncology market opportunity

Addressing Primary and Acquired immunity

Reverse Acquired anti-PD1 resistance

Positive signal in solid tumors especially melanoma for ORR

SPOTLIGHT

Phase 2 liver metastasis from CRC (MSS)- 2nd L

Phase 2 liver metastasis from GC (MSS)-3rd L

Enable anti-PD1 primary resistance in cold tumors

Target liver metastasis which dictate prognosis in two GI malignancies

SPOTLIGHT

Melanoma Phase 2 trial-2nd L

G

SPOTLIGHT CLINICAL TRIALS

SPOTLIGHT	Phase 1	BO-112 monotherapy	
SPOTLIGHT	Phase 1b	BO-112 + anti-PD1 combination in anti-PD1 resistant patients	
SPOTLIGHT 202	Phase 2	BO-112 + pembrolizumab combination in Liver Metastases	
SPOTLIGHT 203	Phase 2	BO-112 + pembrolizumab combination in melanoma	

SPOTLIGHT CLINICAL TRIALS

SPOTLIGHT 101 Phase 1 SPOTLIGHT 102 Phase 1b

- Phase 1
- BO-112 monotherapy

Ø

Study design

- BO-112 (0.6 mg and 1mg) administered intratumorally up to 3 sequential times into a single lesion (median lesion size- 4 cm) to patients with solid tumors:
 - melanoma, leiomyosarcoma, and breast cancer
- Primary endpoint: safety and tolerability
- Secondary endpoint: tumor biomarkers of biological activity (apoptosis/necrosis & T-cell infiltrate)
- 16 patients in 3 Study cohorts
 - 6 patients: 0.6 mg single IT
 administration
 - 3 patients: 0.6 mg three consecutive IT administrations (same lesion)
 - 7 patients: 1.0 mg three consecutive IT administrations (same lesion)

Results

- Tumor Biomarkers post treatment demonstrate clear clinical benefit:
 - Increases in tumor cell death observed in 15/16 patients (despite only 1-3 injections)
 - Increases in CD4+ and CD8+ T cell infiltrates observed in 6 and 3 patients, respectively
 - non-injected lesions show
 increased tumor necrosis
 - 52 different genes associated with immune response were upregulated in the tumor
- Increased peripheral blood biomarker activity post treatment:
 - Increased (> 15% vs. baseline) CD8+, CD4+ T cells, CD4+ T regs, NK, DC, pDC, monocytes and B cells in PBMNCs from 14/16 subjects
- Safety and tolerability well tolerated with mild flu-like symptoms

Pre and post-treatment images from multiplex analysis of a tumor biopsy.

IT injection

Phase 1

BO-112 monotherapy

Abscopal effects observed with BO112 monotherapy

Increased necrosis in non-injected metastatic lesions from 46 year-old female with stage IV leiomyosarcoma and progressive disease after several lines of chemotherapy including an anti PD1/LAG 3 combination.

Pre and post images from CT-scans

Pre-treatment

Post-treatment

Phase 1b

BO-112 + anti-PD1 combination in anti-PD1 resistant patients

Study design

- Regimen: Addition of intratumoral BO-112 to anti-PD1 therapy
- Inclusion criteria: anti-PD1 resistance (Radiological progression while on anti-PD1 therapy) - toughest to treat
- Sample size: 28 patients with metastatic disease
 - NSCLC 13, SCCHN 4, melanoma 10, & RCC 1
 - 71% had visceral (39% lung, 25% liver) or bone lesions
 - 43% of patients had received 2 or more prior lines of treatment
- 20/28 (71%) patients had only 1 lesion injected throughout the study
- Primary objective: safety and tolerability of combination
- Secondary objectives: immune responses, evidence of clinical benefit
- First efficacy assessment performed early: after only 4-5 injections

Results

- Increased anti-tumor CD8+T lymphocytes and genes associated with T cell cytotoxic effects and antigen presentation post-BO-112 correlates with ORR
- Evidence of Clinical Benefit:
 - BO-112 reversed primary anti-PD1 resistance in:
 - 50% (5/10) of Melanoma patients: 20% ORR (PR) & 30% SD*,
 - 100% (1/1 RCC pt: ORR (PR)
 - 47% (8/17) of NSCLC & SCCHN patients: SD
 - Systemic tumor reduction also observed in non injected distal lesions
 - One patient (characterized as a SD) is a PR based on best response in target lesions
- No additional side effects

SPOTLIGHT

Phase 1b

BO-112 + anti-PD1 in anti-PD1 resistant solid tumors

77% (17/22) of patients progressing to anti-PD1 became durable SD or ORR; melanoma: 50% DCR; (20% ORR*)

Changes in CD8 T cell infiltrates in the tumor correlates with clinical benefit

Injection frequency & relevance vs competition in melanoma

- 2/10 and 3/10 of anti-PD1 primary resistant melanoma patients showed durable PRs or SD, respectively with BO-112 injected only up to 4-5 injections before the efficacy assessment (12 weeks)
- Combination of CMP-001 (TLR9 agonist, Checkmate) + pembro in a similar population reported*
- ORR of 7.7% 4 injections first 12 weeks
- ORR 22.5% 8 injections first 12 weeks
- *Abstract CT144. Milhem et al. AACR 2018

SPOTLIGHT SPOTLIGHT

Conclusions

Monotherapy

- Favorable safety, clinical & biomarker activity observed after single intratumoral injection
- Abscopal effects with monotherapy very hard to observe in solid tumors

BO-112+ anti-PD1 in anti-PD1 resistant patients

- 77% clinical benefit in patients from different solid tumors with up to 30% ORR in melanoma
- Clinical signal across all studied indications, meaningful responses in melanoma and patients with liver metastases
- Post-treatment changes in CD8+ T cell infiltrate in tumor is a biomarker to predict responses

- Focus on melanoma and patients with liver metastases
- ORR as primary endpoint
- Unmet medical need in 2L in CRC, 3L Gastric, and 2L melanoma
- Potential for accelerated approval if ORR similar or superior to Spotlight 001 & Spotlight 002
- 3 separate Phase 2/POC trials (liver metastases in patients with CRC, liver metastases in patients with GC, and melanoma)

SPOTLIGHT CLINICAL TRIALS

Spotlight 202 Phase 2 Spotlight 203 Phase 2

Highlight Therapeutics Unlocking the potential of immuno-oncology

SPOTLIGHT

- Phase 2 colorectal and gastric cancer with liver metastasis
- BO-112 + pembrolizumab in collaboration with Merck overcoming primary resistance

Success enables liver mets as potential defining indication for registration of BO-112 in combination with anti-PD1 therapy for patients with CRC and GC. This concept could be used for other indications such as melanoma and NSCLC.

Rationale for liver metastasis indication

- Liver metastasis is the most common metastasis in colorectal (CRC) and gastric cancer (GC)
 - Poor prognosis; high unmet need; rapid read out
 - Variable levels of immune cell infiltration (associated with treatment outcomes), usually "cold"
 - Single organ type for injections minimizes organspecific heterogeneity of tumor microenvironment
- Evidence of safety and activity from SPOTLIGHT 101 and 102 in anti-PD1 resistant patients:

■ 1st assessment ■ End of Study (week 17)

NSCLC: % change from baseline

 Monotherapy: Increase in necrosis observed in liver metastases from patient with adenoid cystic carcinoma after 2 injections of BO-112

Study overview

- 1. Open-label, non-comparative, two-stage study of BO-112 in combination with pembrolizumab in up to 26 3rd line anti-PD1 naïve patients with liver metastases from CRC
- 2. Open-label, non-comparative, two stage study of BO-112 in combination with pembrolizumab in up to 43 2nd line anti-PD1-naïve patients with liver metastases from Gastric/GEJ cancer
 - Trial started enrolment June 2020
 - Sites: Belgium, Germany, Italy, Spain
 - Primary endpoints: ORR and AEs grade 3
 - Secondary endpoints: disease control rate (DCR), duration of response, PFS, OS at 6 months, AEs all grades
- Collaboration with Merck & Co.

SPOTLIGHT

- Phase 2 in 2L Melanoma
- BO-112 + pembrolizumab in 2L melanoma resistant to anti-PD1's

Study overview

- Phase 2/POC, open-label, single arm clinical study to evaluate the efficacy and safety of intra-tumoral administration of BO-112 in combination with pembrolizumab in patients that have progressed on anti-PD1-based therapy as first line in refractory unresectable malignant melanoma stage III or IV
- Indication: 2nd line melanoma
- Q4 2020 start
- 40 patients
- Sites: France, Germany, Italy, Spain (UK, US, Netherlands, Israel, Belgium to follow)
- Primary endpoint: ORR
- Secondary endpoints: disease control rate (DCR), duration of response (DOR), progression-free survival (PFS), overall survival (OS), and iRECIST ORR, DCR, DOR and PFS

2L MELANOMA anti-PD(L)1 resistant

Investigator-led studies

UCLA Phase 1 Sarcoma Clinical Trial

 Highlight Therapeutics Unlocking the potential of immuno-oncology

UCLA Investigator-led Phase 1 study of nivolumab + BO-112 in Sarcoma

Third-party support and validation

Study overview

- Phase 1 clinical trial to study side effects of Nivolumab + BO-112 before surgery for treatment of resectable soft tissue sarcoma
- Rationale:
 - Immunotherapy with mAb (e.g. nivolumab) may help immune system attack the cancer and may interfere with ability of tumor cells to grow and spread
 - Immunotherapy with BO-112 may induce changes in immune system and may interfere with ability of tumor cells to grow and spread; giving nivolumab + BO-112 before surgery may work better in treating patients with soft tissue sarcoma compared to nivolumab alone
- Q4 2020 start
- 25 patients
- Sites: US
- Primary endpoint: frequency and severity of AEs and doselimiting toxicities
- Secondary endpoints: immune-oncologic impact of combined regimen of nivolumab and BO-112 and pathologic treatment effect

Led by Dr. Anusha Kalbasi, physician-scientist and radiation oncologist, UCLA Department of Radiation Oncology & UCLA Jonsson Comprehensive Cancer Center

Use of proceeds

Highlight Therapeutics Unlocking the potential of immuno-oncology

Series B Use of Proceeds

€22 million raise to complete and follow through three separate Phase 2/POCs

Increasing sector focus underlines significant potential value

Developing a competitive position

- Checkmate and Idera (TLR9 agonist) targeting solid tumors
- Clinical package shows BO-112 uniquely able to modify immune pathway, making tumor cells more susceptible to therapy
 - BO-112 demonstrated similar efficacy with fewer injections
 - Potentially superior efficacy combining tumor intrinsic pathways with innate immunity activation
 - Lower injection requirement = barrier to entry for competitors

- BO-112 differentiated from other intratumoral innate immune activating agents
 - Unique single agent activity demonstrated in preclinical studies
 - Addresses two main mechanisms mediating resistance to anti-PD1 therapies
 - 50% of anti-PD1 resistant melanoma patients had clinical benefit after a few BO-112 injections similar trends in other solid tumors.
 - Compares favorably with lack of clinical efficacy for STING/RIG agonists, potentially superior to TLR9 agonists
- Three opportunities of success in the Phase 2 trials to prove BO-112's superior efficacy in reversing anti-PD1 resistance
- Strong and growing IP through 2036 and beyond in US and EU
- Raising €22M to help deliver results from three Phase 2 / POC studies by 2022 (latest trial)
- Multiple potential strategic exits and options guided by Internationally-experienced management team and advisers

BO-112 offers potential solution to anti-PD1 resistance to transform cancer immunotherapy

HIGHLIGHT THERAPEUTICS

Marisol Quintero, CEO info@highlighttherapeutics.com

www.highlighttherapeutics.com

